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How to Model Intelligence?

“The ability of an agent to achieve goals in a wide range of environments.”
— (Russell, 2019)
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How to Model Intelligence?

“The ability of an agent to achieve goals in a wide range of environments.”
— (Russell, 2019)

Let E be the space of all computable reward summable environmental measures with
respect to the reference machine U, and let K be the Kolmogorov complexity function.
The expected performance of agent 7 with respect to the universal distribution 2K(#)
over the space of all environments E is given by,

U(r):=> 27Ky
neE

We call this the universal intelligence of agent 7 (Legg & Hutter, 2007).
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How to Model Intelligence?

{ A

Artificial Intelligence (Al)

Machine Learning (ML)

Most of the hype is based on Deep Learning. 5/46



How to Model Intelligence?

Symbolism

Exploits explicit, rule-based symbolic manipulation, logic, and structured reasoning to
represent knowledge and solve problems.

® Assumption: Intelligence uses high-level, human-readable symbols to represent problems
and logic to solve them.

® Motivation: Model the mind!
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How to Model Intelligence?

Symbolism

Exploits explicit, rule-based symbolic manipulation, logic, and structured reasoning to
represent knowledge and solve problems.

® Assumption: Intelligence uses high-level, human-readable symbols to represent problems
and logic to solve them.

® Motivation: Model the mind!

Connectionism

Exploits artificial neural networks & statistics, emphasizing learning from patterns,
distributed representations, and emergent behaviors.

¢ Assumption: Intelligence emerges from the interaction of simple and low-level units, i.e.
biological neurons.

* Motivation: Model the brain!
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When is Learning Possible?

“The organism feeds on negative entropy.” — (Schrodinger, 1944)
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When is Learning Possible?
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When is Learning Possible?

110011010101110100011100101111
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When is Learning Possible?

Let's say we have the following two 30-bit information:

x; = 010101010101010101010101010101
x2 = 110011010101110100011100101111

Question: Which carries “more” information?
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When is Learning Possible?

Let's say we have the following two 30-bit information:

x; = 010101010101010101010101010101
x2 = 110011010101110100011100101111

Question: Which carries “more” information?

Answer: We say the entropy (Shannon, 1948) of x; is higher than the entropy of xj.
If we read the bits from left to right we are more “often” suprised when reading x».

12/46



When is Learning Possible?

Information entropy measures uncertainty / surprise. It is the expected value of
surprise.

¢ High entropy: highly unpredictable, many possible outcomes, each similarly likely

© Low entropy: predictable, only a few likely outcomes
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When is Learning Possible?

Information entropy measures uncertainty / surprise. It is the expected value of
surprise.

¢ High entropy: highly unpredictable, many possible outcomes, each similarly likely

© Low entropy: predictable, only a few likely outcomes
Lerning requires
entropy + structure ~ complexity.

We have to be surprised but also be able to exploit a structure to compress
observations.
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When is Learning Possible?

A physical formula like
F=m-a

can be thought of a highly compressed representation of some aspects of physical
reality!

In other words, F = m - a reveals the structure of motion, thus the informational
entropy cannot be too high.
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When is Learning Possible?

Some neuroscientists (K. Friston, Kilner, & Harrison, 2006; K. J. Friston, 2011) think
that organisms try to minimize surprise by

1. adjusting expectations (perception, learning)
2. realize expectations (acting)

According to this school of neuroscience,
organisms are their own existence proof.

By acting to keep themselves alive, they continuously generate sensory inputs that
confirm their continued existence.
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3. How Do Machines Learn?



How Do Machines Learn?

“We do not learn from experience [...] we learn from reflecting on
experience.” — John Dewey
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Learning a model of “the world”

300 | | | | | | | | |
o Observed data

—— Linear regression
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The Mathematical Neuron

Neuron

Cell body

Nucleus

Axon hil% Synaptic terminals

Golgi apparatus

Endoplasmic /4
reticulum
Mitochondrion Dendrite

;\ Dendritic branches
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The Mathematical Neuron

Neuron Artificial neuron

Cell body

Axon hil% Synaptic terminals

Golgi apparatus

Endoplasmic /4
reticulum
Dendrite

Dendritic branches
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The Mathematical Neuron

“Because of the ‘all-or-none’
character of nervous activity,
neural events and the relations
among them can be treated by
means of propositional logic.”

O

O\

O—0—0

Warren S. McCulloch Walter H. Pitts Jr
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The Mathematical Neuron

“Because of the ‘all-or-none’
character of nervous activity,
neural events and the relations
among them can be treated by
means of propositional logic.”

1 if 0 x> 1

f(x1,...,xn) =
(a 2 0 otherwise.

Warren S. McCulloch Walter H. Pitts Jr
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The Mathematical Neuron

Complex logical operations can be performed using networks of binary neurons.

z

Identity: C = A And: C=AAB :C=AVB Negation: C = AV —-B
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Synaptic Plasticity

Input Hidden layer Hidden layer Output layer
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Synaptic Plasticity

Input Hidden layer Hidden layer Output layer
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Synaptic Plasticity

Input Neuron Output

W-
- f(g(Xl,X27X3))

Parameters

Parameters determine how strong neurons are wired together:

g(x1,x2,x3) = x1 - w11 + X2 - Wo1 + X3 - w31
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Activation Functions
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Activation Functions

1 f(z)=z
4
1
1 f(z) = max(0, z)
4
0 1
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Activation Functions

1 ifz>0
f(z) = 1 —-f(2) =
1 () =2 (2) {O otherwise
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Activation Functions

1 ifz>0
f(z) = 1 —-f(2) =
1 () =2 (2) {O otherwise
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Synaptic Plasticity

Input Neuron Output

f(g(x1,x2,x3))

W21
O =@

Parameters

“Neurons that fire together, wire together.”

Wij = Wij =1 Xi * Y
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Synaptic Plasticity

Input Neuron Output

W-
- f(g(Xl,X27X3))

wa1
g%\&

Parameters

Y1

“Neurons that fire together, wire together.”
9t+1 = 9,_» —n: VJ(@t)

In this case 0; = (w11, wa1, way).
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Cost Function (Regression)

Mean Squared Error (MSE):
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Cost Function (Regression)

Mean Squared Error (MSE):

J(0) = Z (yi — ho(x/))

where y; is the correct label of a data point x; = (xi,...,x,) in our training data.
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Cost Function (Regression)

Example: Let us suppose hg(x1,x2) = w11 - x1 + wo1 - x2 and let us assume
wi1 = 2, w1 = 0.5 and we have two data points x; = (1,1),y; =1 and

x2 = (—1,—-2),y» = —3. Then our mean squared error is:
J(wir, wor) = % (1= (war - T4 wor - 1))2+ (=3 — (wa1 - (1) + w1 - (—2)))?]
:%Kl—Q-1+Q5&»2+03—%2(—D+05(—Qnﬂ

The gradient would be:

—4 4+ 2wq1 + 3wy

VJ(WH, W21) - —7 + 3W11 + 5W21
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Cost Function (Classification)

Categorical Cross Entropy Cost:

N

J(0) = Z - log (hy(x;))]

where y; is interpreted as the probability distribution of categories for x; = (x1, ..., Xn),
i.e. a data point.
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Gradient Decent

To improve the model's prediction, we try to minimize the cost function. One way to
do this is gradient decent:

Interactive Tutorial
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https://uclaacm.github.io/gradient-descent-visualiser/#playground

Gradient Decent

To improve the model's prediction, we try to minimize the cost function. One way to
do this is gradient decent:

9t+1 == 91_» —n: VJ(@t)

Interactive Tutorial
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https://uclaacm.github.io/gradient-descent-visualiser/#playground

Gradient Decent

To improve the model's prediction, we try to minimize the cost function. One way to
do this is gradient decent:

9t+1 == 91_» —n: VJ(@t)

Condition: VJ(0;) exits!

Interactive Tutorial
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https://uclaacm.github.io/gradient-descent-visualiser/#playground

Gradient Decent

Loss

J(0) =62 —20 42
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Gradient Decent

Loss

J(0) =062 —20 42

VJ(0) =20 —2

_Minimum

1 2
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Gradient Decent

Loss
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Loss
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Gradient Decent
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Design and Try Your Perceptron

Ry Epoch Learning rate Problem type
»
000,000

003 Classification -

DATA FEATURES + — 2 HIDDEN LAYERS ouTPUT
Which dataset do Which properties do

you want to use? you want to feed in?

Training loss 0.508

REGENERATE

XX Thisis the output
from one neuron. |
Hover to see it o
larger
sin(X,)
Colors shows
data, newronand 1 | —
sin(X,) 1 0 1
weight values.

Simplified Tensorflow Playground

Extended Tensorflow Playground
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https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.05035&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&learningRate_hide=false&showTestData_hide=true&discretize_hide=true&regularizationRate_hide=true&percTrainData_hide=true&regularization_hide=true&batchSize_hide=true&noise_hide=true&activation_hide=true
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.41031&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Modeltypes

® Discriminative models: Learn the boundaries of decisions.

® Generative models: Learn the whole distribution of the data.

Discriminative modelling Generative modelling
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4. How Do Humans Train Machines?



Theory-driven Modeling

Reality
(Observations)
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Theory-driven Modeling

Reality
(Observations)

Conceptual Modeling

Conceptual Model h
(Theory)
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Theory-driven Modeling

Reality
(Observations)
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Conceptual Model h

(Digital Information) (Theory)

S

Programming

‘ Computer Model
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Theory-driven Modeling

Reality

(Observations)
Confirmation,

: | Modeli
Falsification Conceptual Modeling

Computer Model
(Digital Information)

S

Programming

Conceptual Model h
(Theory)
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Theory-driven Modeling

Reality

(Observations)
Confirmation,

C tual Modeli
Falsification onceptual Modeling

Computer Model
(Digital Information)

S

Programming

Conceptual Model h
(Theory)

Minds contructs a (falsifiable) theory or hypothesis about reality to test against.
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Data-driven Modeling

Reality
(Observation)
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Data-driven Modeling

Reality
(Observation)

Data Collection

Parametric Model hy & Data
(Digital Information)
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Data-driven Modeling
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Data-driven Modeling

Reality
(Observation)

Evaluation Data Collection

Parametric Model hy & Data
(Digital Information)

Parameters 6
(Digital Information)

S~

Training

Algorithms (directly) fit a parametric model to the data. Minds are usually unable to
conceptualize the trained model.
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Development Cycle

Problem Setting
‘ Data Collection H Feature Selection H Data Preprocessing

o -

‘ Model Training H Model Evaluation H Model Deployment
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Programming Libra

fast_qlinear(t: h.autograd.Funct H . .
forward(ctx, 2, b, seales, zeros): Python and ML libraries (PyTorch,
m, k = a.shape tensorflow, JAX etc.)

e n b.shape

quant_groupsize = 128

block_size_m = 16

block_size_n 32 [

block_size_k = 256

group_size_m = 8

num_warps =

num_stages = 8

total_blocks_| triton.cdiv(m, block_size_m)
total_blocks_l triton.cdiv(n, block_size_n)

Train a Model with Python
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https://github.com/aica-wavelab/aica-assignments/A1_introduction

5. How to Interact with Leaning Machines?




The Marcelle Toolkit

Marcelle: composing interactive machine learning workflows and interfaces (Frangoise,
Caramiaux, & Sanchez, 2021).

https://marcelle.dev/
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https://marcelle.dev/

Marcelle Example - Dashboard

webcam

activate video

mobileNet

Using Mobilenet v with alph:

The Marcelle Toolkit

DataManagement ~ Training ~ Batch Prediction

Instance label

dataset browser

This dataset contains 65 instances.

Real-time Prediction

Capture instances to the training set

Hold to record instances

View More

View More

View More
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Any questions?



References |

Cardon, D., Cointet, J.-P., & Mazieres, A. (2018). Neurons spike back: The invention
of inductive machines and the artificial intelligence controversy. Reseaux, 36,
173-220.

Francoise, J., Caramiaux, B., & Sanchez, T. (2021). Marcelle: Composing interactive
machine learning workflows and interfaces. In The 34th annual acm symposium
on user interface software and technology (pp. 39-53). New York, NY, USA:
Association for Computing Machinery. doi: 10.1145/3472749.3474734

Friston, K., Kilner, J., & Harrison, L. (2006). A free energy principle for the brain.
Journal of Physiology-Paris, 100(1), 70-87. doi:
10.1016/j.jphysparis.2006.10.001

Friston, K. J. (2011). Embodied inference: or “I think therefore | am, if | am what |
think*“. In W. Tschacher & C. Bergomi (Eds.), The implications of embodiment
(cognition and communication) (pp. 89-125). Exeter, UK: Imprint Academic.



References ||

Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine
intelligence. Minds and Machines, 17(4), 391-444. doi:
10.1007/s11023-007-9079-x

Russell, S. (2019). Human compatible: Artificial intelligence and the problem of
control. New York: Viking.

Schrodinger, E. (1944). What is life? The physical aspect of the living cell.
Cambridge, UK: Cambridge University Press.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Tech. J.,
27(3), 379-423.



	How to Model Intelligence?
	When is Learning Possible?
	How Do Machines Learn?
	How Do Humans Train Machines?
	How to Interact with Leaning Machines?
	Appendix
	References


