
AI in Culture and Arts – Tech Crash Course
Introduction to Artificial Intelligence and Machine Learning

Benedikt Zönnchen
5th of November 2025



1. How to Model Intelligence?

2. When is Learning Possible?

3. How Do Machines Learn?

4. How Do Humans Train Machines?

5. How to Interact with Leaning Machines?



1. How to Model Intelligence?

2. When is Learning Possible?

3. How Do Machines Learn?

4. How Do Humans Train Machines?

5. How to Interact with Leaning Machines?



How to Model Intelligence?

“The ability of an agent to achieve goals in a wide range of environments.”
– (Russell, 2019)

Let E be the space of all computable reward summable environmental measures with
respect to the reference machine U , and let K be the Kolmogorov complexity function.
The expected performance of agent π with respect to the universal distribution 2K(µ)

over the space of all environments E is given by,

Ψ(π) :=
∑
µ∈E

2−K(µ)V π
µ .

We call this the universal intelligence of agent π (Legg & Hutter, 2007).
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How to Model Intelligence?

Symbolism

Exploits explicit, rule-based symbolic manipulation, logic, and structured reasoning to
represent knowledge and solve problems.

• Assumption: Intelligence uses high-level, human-readable symbols to represent problems
and logic to solve them.

• Motivation: Model the mind!

Connectionism

Exploits artificial neural networks & statistics, emphasizing learning from patterns,
distributed representations, and emergent behaviors.

• Assumption: Intelligence emerges from the interaction of simple and low-level units, i. e.
biological neurons.

• Motivation: Model the brain!
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How to Model Intelligence?

Source: (Cardon et al., 2018)
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When is Learning Possible?

“The organism feeds on negative entropy.” – (Schrödinger, 1944)
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When is Learning Possible?

Let’s say we have the following two 30-bit information:

x1 = 010101010101010101010101010101

x2 = 110011010101110100011100101111

Question: Which carries “more” information?

Answer: We say the entropy (Shannon, 1948) of x2 is higher than the entropy of x1.
If we read the bits from left to right we are more “often” suprised when reading x2.

12/46



When is Learning Possible?

Let’s say we have the following two 30-bit information:

x1 = 010101010101010101010101010101

x2 = 110011010101110100011100101111

Question: Which carries “more” information?

Answer: We say the entropy (Shannon, 1948) of x2 is higher than the entropy of x1.
If we read the bits from left to right we are more “often” suprised when reading x2.

12/46



When is Learning Possible?

Information entropy measures uncertainty / surprise. It is the expected value of
surprise.

• High entropy: highly unpredictable, many possible outcomes, each similarly likely

• Low entropy: predictable, only a few likely outcomes

Lerning requires

entropy + structure ≈ complexity.

We have to be surprised but also be able to exploit a structure to compress
observations.
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When is Learning Possible?

A physical formula like
F = m · a

can be thought of a highly compressed representation of some aspects of physical
reality!

In other words, F = m · a reveals the structure of motion, thus the informational
entropy cannot be too high.
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When is Learning Possible?

Some neuroscientists (K. Friston, Kilner, & Harrison, 2006; K. J. Friston, 2011) think
that organisms try to minimize surprise by

1. adjusting expectations (perception, learning)

2. realize expectations (acting)

According to this school of neuroscience,

organisms are their own existence proof.

By acting to keep themselves alive, they continuously generate sensory inputs that
confirm their continued existence.
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How Do Machines Learn?

“We do not learn from experience [...] we learn from reflecting on
experience.” – John Dewey
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The Mathematical Neuron

Warren S. McCulloch

“Because of the ‘all-or-none’
character of nervous activity,
neural events and the relations
among them can be treated by
means of propositional logic.”

∑
Walter H. Pitts Jr
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The Mathematical Neuron

Warren S. McCulloch

“Because of the ‘all-or-none’
character of nervous activity,
neural events and the relations
among them can be treated by
means of propositional logic.”

f (x1, . . . , xn) =

{
1 if

∑n
k=1 xk > 1

0 otherwise.

Walter H. Pitts Jr
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The Mathematical Neuron

Complex logical operations can be performed using networks of binary neurons.

A

C

Identity: C = A

A B

C

And: C = A ∧ B

A B

C

Or: C = A ∨ B

A B

C

−

Negation: C = A ∨ ¬B
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Synaptic Plasticity

Input

x1

x2

x3

...

xn

Hidden layer

...

Hidden layer

...

Output layer

y1

y2

(Dog)

(Cat)

hθ(x) = y,

where x = (x1, . . . xn) and y = (y1, . . . , yk)
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Synaptic Plasticity

Input

x1

x2

x3

Neuron

f (g(x1, x2, x3))

Output

y1

w11

w21

w31

Parameters

Parameters determine how strong neurons are wired together:

g(x1, x2, x3) = x1 · w11 + x2 · w21 + x3 · w31
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Activation Functions
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Synaptic Plasticity

Input

x1

x2

x3

Neuron

f (g(x1, x2, x3))

Output

y1

w11

w21

w31

Parameters

“Neurons that fire together, wire together.”

wij = wij − η · xi · yj
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Synaptic Plasticity

Input

x1

x2

x3

Neuron

f (g(x1, x2, x3))

Output

y1

w11

w21

w31

Parameters

“Neurons that fire together, wire together.”

θt+1 = θt − η · ∇J(θt)

In this case θt = (w11,w21,w31).
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Cost Function (Regression)

Mean Squared Error (MSE):
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Cost Function (Regression)

Mean Squared Error (MSE):

J(θ) =
1

N

N∑
i=1

(yi − hθ(xi ))2

where yi is the correct label of a data point xi = (x1, . . . , xn) in our training data.
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Cost Function (Regression)

Example: Let us suppose hθ(x1, x2) = w11 · x1 + w21 · x2 and let us assume
w11 = 2,w21 = 0.5 and we have two data points x1 = (1, 1), y1 = 1 and
x2 = (−1,−2), y2 = −3. Then our mean squared error is:

J(w11,w21) =
1

2

[
(1− (w11 · 1 + w21 · 1))2 + (−3− (w11 · (−1) + w21 · (−2)))2

]
=

1

2

[
(1− (2 · 1 + 0.5 · 1))2 + (−3− (2 · (−1) + 0.5 · (−2)))2

]
The gradient would be:

∇J(w11,w21) =

[
−4 + 2w11 + 3w21

−7 + 3w11 + 5w21

]
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Cost Function (Classification)

Categorical Cross Entropy Cost:

J(θ) = − 1

N

N∑
i=1

[yi · log (hθ(xi ))]

where yi is interpreted as the probability distribution of categories for xi = (x1, . . . , xn),
i. e. a data point.
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Gradient Decent

To improve the model’s prediction, we try to minimize the cost function. One way to
do this is gradient decent:

θt+1 = θt − η · ∇J(θt)

Condition: ∇J(θt) exits!

Interactive Tutorial

31/46

https://uclaacm.github.io/gradient-descent-visualiser/#playground
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Gradient Decent

−2 −1 1 2 3 4

J(θ) = θ2 − 2θ + 2

θ

Loss

32/46



Gradient Decent

−2 −1 1 2 3 4

Minimum

J(θ) = θ2 − 2θ + 2

θ

Loss

32/46



Gradient Decent

−2 −1 1 2 3 4

Minimum

J(θ) = θ2 − 2θ + 2

∇J(θ) = 2θ − 2

θ

Loss

32/46



Gradient Decent

−2 −1 1 2 3 4

−η · ∇J(θ)

Minimum

J(θ) = θ2 − 2θ + 2

∇J(θ) = 2θ − 2

θ

Loss

32/46



Gradient Decent

−2 −1 1 2 3 4

−η · ∇J(θ)

Minimum

J(θ) = θ2 − 2θ + 2

∇J(θ) = 2θ − 2

θ

Loss

32/46



Gradient Decent

−2 −1 1 2 3 4

−η · ∇J(θ)

Minimum

J(θ) = θ2 − 2θ + 2

∇J(θ) = 2θ − 2

θ

Loss

32/46



Gradient Decent

−2 −1 1 2 3 4

−η · ∇J(θ)

Minimum

J(θ) = θ2 − 2θ + 2

∇J(θ) = 2θ − 2

θ

Loss

32/46



Gradient Decent

−2 −1 1 2 3 4

−η · ∇J(θ)

Minimum

J(θ) = θ2 − 2θ + 2

∇J(θ) = 2θ − 2

θ

Loss

32/46



Gradient Decent

−2 −1 1 2 3 4

−η · ∇J(θ)

Minimum

J(θ) = θ2 − 2θ + 2

∇J(θ) = 2θ − 2

θ

Loss

32/46



Gradient Decent
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Design and Try Your Perceptron

Simplified Tensorflow Playground Extended Tensorflow Playground

34/46

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.05035&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&learningRate_hide=false&showTestData_hide=true&discretize_hide=true&regularizationRate_hide=true&percTrainData_hide=true&regularization_hide=true&batchSize_hide=true&noise_hide=true&activation_hide=true
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.41031&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Modeltypes

• Discriminative models: Learn the boundaries of decisions.

• Generative models: Learn the whole distribution of the data.

Discriminative modelling Generative modelling
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Theory-driven Modeling

Reality
(Observations)

Conceptual Model h
(Theory)

Computer Model
(Digital Information)

Conceptual Modeling

Programming

Confirmation,
Falsification

Minds contructs a (falsifiable) theory or hypothesis about reality to test against.
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Data-driven Modeling

Reality
(Observation)

Parametric Model hθ & Data
(Digital Information)

Parameters θ
(Digital Information)

Data Collection

Training

Evaluation

Algorithms (directly) fit a parametric model to the data. Minds are usually unable to
conceptualize the trained model.

38/46



Data-driven Modeling

Reality
(Observation)

Parametric Model hθ & Data
(Digital Information)

Parameters θ
(Digital Information)

Data Collection

Training

Evaluation

Algorithms (directly) fit a parametric model to the data. Minds are usually unable to
conceptualize the trained model.

38/46



Data-driven Modeling

Reality
(Observation)

Parametric Model hθ & Data
(Digital Information)

Parameters θ
(Digital Information)

Data Collection

Training

Evaluation

Algorithms (directly) fit a parametric model to the data. Minds are usually unable to
conceptualize the trained model.

38/46



Data-driven Modeling

Reality
(Observation)

Parametric Model hθ & Data
(Digital Information)

Parameters θ
(Digital Information)

Data Collection

Training

Evaluation

Algorithms (directly) fit a parametric model to the data. Minds are usually unable to
conceptualize the trained model.

38/46



Data-driven Modeling

Reality
(Observation)

Parametric Model hθ & Data
(Digital Information)

Parameters θ
(Digital Information)

Data Collection

Training

Evaluation

Algorithms (directly) fit a parametric model to the data. Minds are usually unable to
conceptualize the trained model.

38/46



Development Cycle

Problem Setting

Data Collection Feature Selection Data Preprocessing

Model Training Model Evaluation Model Deployment
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Programming Libraries

Python and ML libraries (PyTorch,
tensorflow, JAX etc.)

Train a Model with Python
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https://github.com/aica-wavelab/aica-assignments/A1_introduction
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The Marcelle Toolkit

Marcelle: composing interactive machine learning workflows and interfaces (Françoise,
Caramiaux, & Sanchez, 2021).

https://marcelle.dev/
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The Marcelle Toolkit
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Any questions?
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